Locally existing endothelial cells and pericytes in ovarian stroma, but not bone marrow-derived vascular progenitor cells, play a central role in neovascularization during follicular development in mice

نویسندگان

  • Fumie Kizuka-Shibuya
  • Nobuko Tokuda
  • Kiyoshi Takagi
  • Yasuhiro Adachi
  • Lifa Lee
  • Isao Tamura
  • Ryo Maekawa
  • Hiroshi Tamura
  • Takashi Suzuki
  • Yuji Owada
  • Norihiro Sugino
چکیده

BACKGROUND Neovascularization is necessary for follicular growth. Vascularization is first observed in preantral follicles, and thereafter the vasculature markedly increases in follicles undergoing development. Neovascularization includes angiogenesis and vasculogenesis. Vasculogenesis is the formation of new blood vessels by bone marrow-derived endothelial progenitor cells. It is unclear whether vasculogenesis occurs during follicular growth. Blood vessels must be mature to be functional blood vessels. Mature blood vessels are characterized by the recruitment of pericytes. However, it is unclear where pericytes come from and whether they contribute to neovascularization in the follicle during follicular growth. In this study, we investigated whether bone marrow-derived progenitor cells that differentiate into vascular endothelial cells or pericytes contribute to neovascularization during follicular growth. METHODS A parabiosis model was used in this study. Six-week-old wild-type and transgenic female mice expressing green fluorescent protein (GFP) were conjoined between the lateral abdominal regions to create a shared circulatory system. After 6 weeks, the ovaries were obtained and immunostained for CD31/CD34 (a vascular endothelial cell marker), platelet-derived growth factor receptor-β (PDGFR-β) (a pericyte marker), and GFP (a bone marrow-derived cell marker). RESULTS Cells that were positive for CD34 and PDGFR-β were observed in the stroma adjacent to the primary or early preantral follicles and in the theca cell layer of the follicles from the late preantral stage to the preovulatory stage. CD31/CD34 and GFP double-positive cells were observed in the theca cell layer of the follicle from the antral stage to the preovulatory stage while the number of double-positive cells in the preovulatory follicles did not increase. PDGFR-β and GFP double-positive cells were observed in the theca cell layer of the preovulatory follicle but not in the smaller follicle. CONCLUSIONS Locally existing endothelial cells and pericytes in the stroma play a central role in the neovascularization during follicular growth, while bone marrow-derived endothelial cells and pericytes partially contribute to this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VEGF increases engraftment of bone marrow-derived endothelial progenitor cells (EPCs) into vasculature of newborn murine recipients.

Recent evidence suggests that bone marrow-derived angioblasts or endothelial progenitor cells circulate in peripheral blood and can incorporate at sites of pathologic neovascularization or during the ovarian cycle. However, the incorporation of endothelial progenitor cells into vessels of nonischemic tissues in adult animals has not been observed. We hypothesized that the vascular microenvironm...

متن کامل

Cardiac ischemia activates vascular endothelial cadherin promoter in both preexisting vascular cells and bone marrow cells involved in neovascularization.

Vascular endothelial cadherin (VE-cadherin) is expressed on vascular endothelial cells, which are involved in developmental vessel formation. However, it remains elusive how VE-cadherin-expressing cells function in postnatal neovascularization. To trace VE-cadherin-expressing cells, we developed mice expressing either green fluorescent protein or LacZ driven by VE-cadherin promoter using Cre-lo...

متن کامل

Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition.

OBJECTIVE Atherosclerosis and restenosis after vascular injury are both characterized by endothelial dysfunction, apoptosis, inappropriate endothelialization, and neointimal formation. Bone marrow-derived endothelial progenitor cells have been implicated in neovascularization, resulting in adult blood vessel formation. Despite the anticipated stem cell plasticity, the role of bone marrow-derive...

متن کامل

Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis.

PURPOSE Bone-marrow (BM)-derived hematopoietic precursor cells are thought to participate in the growth of blood vessels during postnatal vasculogenesis. In this investigation, multichannel laser scanning confocal microscopy and quantitative image analysis were used to study the fate of BM-derived hematopoietic precursor cells in corneal neovascularization. METHODS A BM-reconstituted mouse mo...

متن کامل

PPARα Is Essential for Microparticle-Induced Differentiation of Mouse Bone Marrow-Derived Endothelial Progenitor Cells and Angiogenesis

BACKGROUND Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs. METHODOLOGY/PRINCIPAL FINDINGS We studied the effects of MPs obtained from wild type (MPs(PPARalpha+/+)) and knock-out (MPs(PPARalpha-/-)) mice on EPC ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014